Optimal ancilla-free Clifford+T approximation of z-rotations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal ancilla-free Clifford+V approximation of z-rotations

We describe a new efficient algorithm to approximate z-rotations by ancilla-free Pauli+V circuits, up to a given precision ε. Our algorithm is optimal in the presence of an oracle for integer factoring: it outputs the shortest Pauli+V circuit solving the given problem instance. In the absence of such an oracle, our algorithm is still near-optimal, producing circuits of V-count m+O(log(log(1/ε))...

متن کامل

Optimal ancilla-free Clifford+T approximation of z-rotations

Given a gate set S universal for quantum computing, the problem of decomposing a unitary operator U into a circuit over S is known as the synthesis problem. This problem can be solved exactly, if U belongs to the set of circuits generated by S. Otherwise, it can be solved approximately, by finding a circuit U ′ such that ||U ′ −U || < for some chosen precision > 0. The synthesis problem is impo...

متن کامل

Optimal Ancilla-free Pauli+V Circuits for Axial Rotations

Recently Neil Ross and Peter Selinger analyzed the problem of approximating zrotations by means of single-qubit Clifford+T circuits. Their main contribution is a deterministic-search technique which allowed them to make approximating circuits shallower. We adapt the deterministic-search technique to the case of Pauli+V circuits and prove similar results. Because of the relative simplicity of th...

متن کامل

Ancilla-free Reversible Logic Synthesis via Sorting

Reversible logic synthesis is emerging as a major research component for post-CMOS computing devices, in particular Quantum computing. In this work, we link the reversible logic synthesis problem to sorting algorithms. Based on our analysis, an alternative derivation of the worst-case complexity of generated reversible circuits is provided. Furthermore, a novel column-wise reversible logic synt...

متن کامل

Ergodicity of Z Extensions of Irrational Rotations

Let T = [0, 1) be the additive group of real numbers modulo 1, α ∈ T be an irrational number and t ∈ T. We consider skew product extensions of irrational rotations by Z 2 determined by T : T × Z 2 → T × Z 2 T (x, s 1 , s 2) = " x + α, s 1 + 2χ [0, 1 2) (x) − 1, s 2 + 2χ [0, 1 2) (x + t) − 1 «. We study ergodic components of such extensions and use the results to display irregularities in the un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum Information and Computation

سال: 2016

ISSN: 1533-7146,1533-7146

DOI: 10.26421/qic16.11-12-1